Análise Combinatória: Princípio Multiplicativo

A análise combinatória é um ramo da matemática que estuda coleções finitas de objetos que satisfaçam certos critérios específicos, e se preocupa, em particular, com a "contagem" de objetos nessas coleções (combinatória enumerativa) e com a decisão se certo objeto "ótimo" existe (combinatória extrema) e com estruturas "algébricas" que esses objetos possam ter (combinatória algébrica).

O assunto ganhou notoriedade após a publicação de "Análise Combinatória" por Percy Alexander MacMahon em 1915. Um dos destacados combinatorialista dos últimos tempos foi Gian-Carlo Rota, que ajudou a formalizar o assunto a partir da década de 1960. O engenhoso Paul Erdos trabalhou principalmente em problemas extremos. O estudo de como contar os objetos é algumas vezes considerado separadamente como um campo da enumeração.

Um exemplo de problema combinatório é o seguinte: Quantas ordenações são possíveis fazer com um baralho de 52 cartas? O número é igual a 52! (ou seja, "cinquenta e dois fatorial"), que é o produto de todos os números naturais de 1 até 52. Pode parecer surpreendente o quão enorme é esse número, cerca de 8,065817517094 × 1067. É algo maior que 8 seguido de 67 zeros. Comparando este número com alguns outros números grandes, ele é maior que o quadrado do Número de Avogadro, 6,022 × 1023, quantidade equivalente a um mol".

Da wikipédia.

Assista essa teleaula e reforçe esses conceitos, bons estudos!

Parte 1

Parte 2

Comentários

comentários

Author: Orestes Alessandro

Eu acredito que nós somos aquilo que compartilhamos, aqui no Pense Vestibular uso minha experiência de 20 anos como professor de cursos pré-vestibular para facilitar a maneira de aprender a matemática.

Share This Post On

Submit a Comment

O seu endereço de email não será publicado. Campos obrigatórios marcados com *

Pode usar estas etiquetas HTML e atributos: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>